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Abstract. A lemma, proposed by Morita and Horiguchi to determine the ground-state phase
diagram of the spin}- axial next-nearest-neighbour Isingngini) model, is generalized to
arbitrary spin. A prescription for finding the ‘fundamental spin arrangements’ which are the
basic building blocks for the ground state is given, and the method of constructing the ground
state is explained. The method is applied to a determination of the magnetic ground-state phase
diagrams of thesnnni model with arbitrary spin, various one-dimensional spirnkini models

with higher-order axial spin interactions, and to the same systems with interchain couplings in
two and three dimensions.

1. Introduction

The axial next-nearest-neighbour IsingN{NI) model with bilinear exchange [1] has
attracted many investigators on account of the fact that it is a simple model that exhibits
spatially modulated phases. Sginlsing models with higher-order next-nearest-neighbour
interactions may be regarded as extendesNI models, and are also expected to exhibit a
variety of interesting phase transitions and ordered states.

Determination of the ground-state spin configuration is a fundamental and, in the case of
systems with competing interactions, a non-trivial problem, in the study of phase transitions.
For one-dimensional Ising systems with periodic boundary conditions, the eigenvalues of
the transfer matrix can be used to determine the ground-state energy [2,3]. However, for
a spinsS system with next-nearest-neighbour interactions, the size of the transfer matrix is
(25 +1)2 x (25 +1)2. Thus for a system with large spin, or one having even more extended
interactions, it becomes very difficult to calculate the eigenvalues analytically due to the
size of the matrix involved. As the ground-state configuration is determined indirectly from
the exact ground-state energy in this method, the transfer matrix approach is no longer
feasible for this purpose. For systems with macroscopic ground-state degeneracy [4], a
direct determination of the spin configurations is required.

The one-dimensionad = % ANNNI model in an external field may be described by the
Hamiltonian

H=— (J18;8:1+ 1SSz +hS)  [2-2] model @)

|| Author to whom correspondence should be addressed.

0305-4470/96/050949+14%$19.5@C) 1996 IOP Publishing Ltd 949



950 Y Muraoka et al

where J; and J, are the nearest and next-nearest-neighbour exchange interactions, and
is the external field (in units where the splitting factor and Bohr magneton are unity).
Throughout this paper, it is tacitily assumed that periodic boundary conditions are imposed
on all the systems.

For the above model, Morita and Horiguchi [5] proved the lemma that an arbitrary
spin configuration can be regarded as composed of a sequence of only six kinds of spin
arrangements, and that the total enerfjy|s a linear combination of the energy elements,
€;, belonging to them. Specifically,

E = nypey +n_e_ + 2n+7€+, =+ 3n+776+77 + 3n+7+6+7+ =+ 4n+77+6+77+ (2)

where the subscripts —, etc indicate the spin arrangements.is the number of times the
particular arrangement, occurs in the arbitrary spin configuration, and the energiese
the energies per spin in each arrangement.

In this paper we adopt the concept afundamental spin arrangemeand generalize
the above lemma to be applicable to all one-dimensional extexded models of arbitrary
spin § with nearest and various next-nearest-neighbour interactions, described by

H=— Z H(S;, Sit1, Sit2) 3)

whereS; = S,5—-1,...,—S8. H(S;, Si11, Siy+2) may include not only the bilinear exchange
interactionss; S;.1, but also higher-order spin interactiofi3s?, ,, ;2 Si2, for example.

This extended lemma is then used, firstly, to find the ground-state phase diagram of various
one-dimensional extendesNNNI models exactly, and secondly, to find the ground state

of axial two- and three-dimensional models having ferromagnetic interchain couplings. As
a check on our technique, we have compared our results with those of a direct computer
search for the ground-state configuration of finite chains.

The arrangement of the paper is as follows. In section 2.1 the extended lemma
is proposed, and a demonstration of its use on a specimen configuration is presented.
Section 2.2 gives the prescription for finding the fundamental spin arrangements into which
an arbitrary configuration may be broken. For the cases of % and § = 1 all the
fundamental spin arrangements are found. The construction of the ground state is described
in section 2.3, and the results for the ground-state phase diagrams of the one-dimensional
and higher-dimensional extendediNNI models are presented in sections 3.1 and 3.2,
respectively. Finally, in section 4, the results are summarized and concluding remarks
made.

2. Basic theory

2.1. Alemma

We introduce abasic dividing rulefor Ising chains of arbitrary spin quantum number,
having only nearest- and next-nearest-neighbour spin interactions. (The slight modification
required for systems with a more extensive range of interactions is given in section 4.) A
one-dimensional spin arrangement on which periodic boundary conditions are imposed will
be called aclosed chain Denoting the spin states 6f by A, B, C, etc, the basic dividing

rule can be described with the help of figure 1. Proceeding along the chain, one looks at
the sequence of states associated with each pair of nearest-neighbouring spins in turn. If
a sequence of states repeats, one cuts the closed chain immediately to the left of the first
spin in each of the repeating segments. Periodic boundary conditions are then imposed on
each of the broken parts to form new closed chains. Thus in figure 1, with the observation
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Figure 1. The basic dividing rule for arbitrary spin quantum number. A,.B,, indicate
different spin states.

dﬁ@mf!lllotilooilb
4 51 6
75 8i - 9 12 Y 12 1
¥ \ ) ¥ 1

Figure 2. An example of a decomposition of a spin-1 configuration into fundamental spin
arrangements, for a system with nearest- and next-nearest-neighbour interactions.

that segment AB occurs twice, the initial closed chain is broken to the left of each AB to
give two new chains as shown. It is easily verified, that for systems having only nearest-
and next-nearest-neighbour interactions, that the energy of the original closed chain is equal
to the sum of the energies of the two shorter closed chains. One then looks for further
repetition in the sequences of the states of nearest-neighbouring spins in the smaller chains,
and the process is repeated until no further subdivision of the smaller chains is possible.
This process is comprehensively illustrated in figure 2, where the decomposition of a spin
configuration of 30 spins of a spin-1 system is shown. The shaded closed chains, for which
no further subdivision is possible, are ternfeddamental spin arrangements

The lemma is as follows. The total energyof an arbitrary spin configuration can be
expressed as a linear combination of the energi@3e¢(6), corresponding to fundamental
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spin arrangement®, of which the number is finite. () is the energy/spin of the
fundamental spin arrangement containing) spins. Mathematically,

E = ZK(Q)n(Q)e(G) 4)
6

N =) «@n®) ©)
0

where N is the total number of spins in the arbitrary spin configuration, a(@) is the
number of times the fundamental spin arrangengeappears in its subdivision.

2.2. The fundamental spin arrangements

As with section 2.1, the discussion is restricted to those fundamental spin arrangements
appropriate to systems described by equation (3). The extension to systems with more
extended interactions is mentioned in section 4. Because each spin can be in one of
(2S5 + 1) possible states, the total number of different configurations for a pair of spins
is (25 + 1)2. Since a fundamental spin arrangement cannot (by definition) have a repetition
in the sequence of states for a pair of spins, the maximum number of spins in a fundamental
spin arrangement i€2S + 1)2.

To find all the possible fundamental spin arrangements we make use of a directed graph
of the type used in graph theory [6] . The graphs for the fundamental spin arrangements are
constructed by connectin@S + 1) vertices by directed edges. Each vertex represents one of
the (25 + 1) spin states and the complete directed graph also has loops connecting a vertex
with itself. Each directed edge of this complete directed graph represents the sequence of
states for two nearest-neighbouring spins. A fundamental spin arrangement thus corresponds
to closed directed looped patterns around the directed edges, without repetition.

The complete directed graph for tie= % systems is shown in figure 3. The six looped
patternsa, ¢, b - d,a - b — d, b - ¢ - d anda — b — ¢ — d represent the
six fundamental spin arrangemerits|, 14, 114,11 and41]} |, with periodic boundary
conditions, respectively. This result is in agreement with that of Morita and Horiguchi [5] .

The complete directed graphs o= 1 andS = g systems are shown in figuressd@nd
(b), respectively. For & = 1 system, there exist 92 fundamental spin arrangements, listed
in figure 5, corresponding to the possible closed clockwise looped patterns of figyre 4(

In figure 5, the fundamental spin arrangements of each length have been divided into three
groups. Those of type ‘a’, are all the ones possessing left-right symmetry in the reversal
of the order of the elements (remembering periodic boundary conditions are imposed). The
remainder do not exhibit that symmetry. Each of the latter is classed as either type ‘b’ or

type ‘c’ depending on whether, or not, it, and it's distinct reversed partner, can be used to

construct macroscopic degenerate spin configurations (see the next section).

b

d

Figure 3. The complete directed graph corresponding t® & % system.
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(a) (b)

Figure 4. The complete directed graph correspondingapd spin-1, b) a spin-g system.

k(@) =1 t k(@) =5 110L0] k() =7 T10L1410] 10110011
O |a 111014 1110104 100110
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TOO1T ! TtOO0T 1O TO0L0OT L
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x(8) =2 10 1100 101101 1] 1001101
tila 1101l 1101101
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T10l1e 1100110 k() =9 TTOTLI00L Y
10010 110101} TTO1T1L00¢
«(@) =3 110 TO0L TTI00L L ¢ T1TO01T101L1¢
1114 11014 1011044 110011 10¢
100 |a TO0OLT IO 110041110
Tl T1OOLOT Y TTO0L0T L e
00 k(6) = 6 T10410] TOLt110] 110041110
oLl 111001 11001101
1Ol b tO1 10!l ]|a _ TTOIOOT
10014 k(0)=8 11011001 11000
TOL1TL0 1101101114 111010011
(0) =4 1 1O07 10101 TTO11101 11100101 1]
11 T10o14l 11001101
1O0t4la 1100114 TTO0L 110
1010 110040 T1TO0L01T
11014 T10011c T1041LL0
001 T1i0Ll 1101011
11017 100110 11010011 ¢
TtO0L ] ¢ 110014 11011014
104 11101001
- 111010114

Figure 5. The fundamental spin arrangements for a spin-1 system having nearest- and next-
nearest-neighbour interactions.

2.3. The ground state

Just as, in section 2.1, arbitrary spin configurations can be divided into a sum of spin
arrangements with the same total energy, fundamental spin arrangements may be used to
construct arbitrary spin arrangements whose energy can be the sum of the energies of the
fundamental spin arrangements used. Since the ground state of a system is that having
the least energy per spin, we can construct it from the fundamental spin arrangefjients,
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having the least energy per spin of all the fundamental spin arrangements possible, in such
a way that the ground-state enerdy, is

E =Y «®n®)e®) N =" k@®Hn©;). (6)

We consider first the situation when there is a unigtie That is, there is only one
fundamental spin arrangement having the lowest energy per spin. Furti#érjsifof the
type ‘a’, it is seen from the basic dividing rule that equation (6) can be made to hold if we
simply join thern(6*) fundamental spin arrangemefit end to end, but with the sequence
of states in eacld* occurring in the same order along the chain. As an example, in the
spin-1 case, if the fundamental spin arrangemeht)() has the lowest energy per spin,
then the ground state is

1100 11001100+

On the other hand, i#* had been of type ‘b’, two possibilities exist since we may use
either6*, or 6" obtained by left>right reversal in the order of the elements. For example,
if 6*is O, thend} is | O1 and we have the two possibilities

1OV 1OV 1OV 10O -
O IOt IO IO .

These, of course, are equivalent, the second simply corresponding to the reversal of the
chain direction, so it is not a new ground state. We note also, that for this fundamental
spin arrangement any spin configuration formed by a combinatigit @nd6* must lead
to a higher energy, as the configuration obtained cannot be subdivided back irttd gunst
0's using the basic dividing rule. The ground state therefore is non-degenerate.

However, if 6* is one of the fundamental spin arrangements we have labelled ‘c’,
the situation is different. In that case other spin configurations can be constructed from
combinations ofo* and 6 without increasing the energy per spin. For example, with

0* =2 OO0 (=00 andor =L OO 1 (= OO 1)), we may form sequences like
OOt OOITOO T OOITOOMN

having the same energy as that configuration

OO T OOITOOITOOITOO T

constructed just fron®*. This combination of* and 6" leads to a ground state with a
macroscopic degeneracy, whose value for this example is given in the next section. We also
point out that, since the energy per spinédfandé’ are always the same, independent of

the Hamiltonian parameters, this type of degeneracy is generally associated with extended
regions of the phase diagram.

The second situation is when there is more than one fundamental spin arrangément
having the same lowest energy per spin. This is the situation that always occurs at a phase
boundary, and can again give rise to a macroscopic degeneracy. An example is given in
the next section.

3. Magnetic phase diagrams

3.1. One-dimensional models

In this section, exact results for the magnetic phase diagrams of the one-dimensioral
([2-2]) model described by the Hamiltonian of equation (1), and for the one-dimensional
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extendedannNI ([2—4] and [3—4]) models described by
H=—> (J185Sis1+ 25282, + hS) [2—4] model (7)

H=- Z(JlSi Sis1+ J28iS41Siv2 + hS)) [3-4] model (8)

are obtained using the methods described above. In the [2—-4] and [3—-4] models the higher-
order spin interactions§?SZ , (the biquadratic interaction) angtS2 ,S;.> (the three-site
four-spin interaction), are considered as next-nearest-neighbour interactions [7] .

The magnetic ground-state phase diagrams forSthe % [2-2] model are shown in
figure 6. Although plotted in a different parameter space, it can be shown that they are
consistent with the phase diagram of Morita and Horiguchi [5] . The same magnetic phase
diagram (apart from scaling) is also obtained for she: 1 [2—2] model. In fact, the ground
state of the one-dimensional [2-2] model with arbitrary spin quantum nuifibeay be
described by the following reduced Hamiltonian:

h
Hrea = —S° Z<J10i0i+1 + J20i0i42 + SG')’ )

whereo; = £1. Thus by using the reduced field S|J1|, figure 6 gives the ground-state
phase diagram for arbitrary spin quantum numbeihe coordinates.J,/|J1|, h/S|J1|) of
the multiphase points are

A: (-31,0 A*: (0,£2) B*: (-3.0). (10)
Also, the phase boundaries are as follows:
For J; > 0,
M-WU):h=0 M =N i+ 202+ (h/S) =0. (11)
For J; < 0,
M=) 24— (/S)=0 M=) 12l —-2/,—(h/S) =0 (12)
M) =N Tl + 22+ (h/S) = 0.
— T T T T T T T — T T T T
%5: (a) : §5" T (b) A
i i ] i i
O o [ -
i J ] I |
L - L \L -
~5F - -5+ 4
_15 L L 1 1 (!) 1 1 { { é 1 1 1 é
]2/]1 JZ/U1I

Figure 6. The ground-state phase diagram of thein [2—-2] model with arbitrary spin. &)
and p) are forJ; > 0 andJ; < 0, respectively.
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g T T T T T I T ¥ T T T
= 5 e
1100 i |
0 A
OOl | ! ]
-5+ -
~15 1 i ; ) (1) I 1 L I é

Figure 7. The ground-state phase diagram for the- 1

Joll [2-4] model withJ; > 0, in the case whenJo = 0.

The other phase boundaries can be obtained by symmetry, or from the coordinates of the
multiphase points given in equation (10).

The ground-state phase diagrams for the- 1 [2-4] and [3—-4] models are shown in
figures 7 and 8, and in figure 9, respectively. The salient features of these phase diagrams
are described in the next section dealing with two- and three-dimensional models in which
interchain coupling is also included. The result for the= 1 [3—4] model withJ; > 0,
in the special case whein= 0, is in agreement with that obtained by the transfer matrix
method [3]. As a check on our technique, we have compared the phase diagrams with those
deduced from the results of a computer search of the ground-state configurations of finite
chains up to twelve spins long. The results agree.

The ground-state degeneracy at the phase boundaries inantii@ model has been
discussed in [8]. Similar considerations apply to the phase boundaries in the [2-4] and
[3-4] models. As an example, we consider the phase boundary betweenptiese and
the 41 OO phase in figure 7. On the boundary, any sequence of the fundamental spin
arrangementd and 11 OO along the chain has the same ground-state energy, since the
€ andeyo are degenerate at the phase boundary. Letfiggdenote the ground-state
degeneracy of av-spin system, the recurrence relation

Dy =Dy_1+ Dy_4 (13)

is obtained. In the thermodynamic limit, we find the remanent entropy is given by

lim i In(Dy) = In(x) ~ 0.32228 (14)
N—oo N

wherey is the solution of the quartic equatigr?(x — 1) = 1. Due to symmetry, the same
result also applies to the boundary between trend OO || phases.

Macroscopic ground-state degeneracies can exist within a region of the phase diagram,
as was pointed out in [4] in the case of the triangular antiferromagnet. For example,
the phase labelled OO | in figure 8@) has a degeneracy for the reasons discussed in
section 2.3. In this case, the recurrence relation

Dy =2Dy_4 (15)
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i

5 : 1
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Figure 8. The ground-state phase diagram for the- 1 [2-4] model withJ; < 0. (@) and €)
correspond ta Jo/|J1| = 0 and 2, respectively. Portions of these diagrams are expandé)l in (
and (), respectively, to show the labelling of the multiphase points.

holds, and the remanent entropy is

. 1 1
[Jinoo N In(Dy) = 2 In(2) . (16)

3.2. Axial two- and three-dimensional models with ferromagnetic interchain coupling

In this section we report results for the magnetic ground-state phase diagrams of axial two-
and three-dimensional models having ferromagnetic interchain coupling [3, 9, 10], described
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5 H 7 7 T T 7 T T T
<5r 110 (a) 1
L At .
L 1 4
O_
i ! |
—5k -
i L ) i
5
JolJ4
E T T 1 T T T
=l (©) 1
5r 1 -
o T -
-5k -
L | 4
o ] Figure 9. The ground-state phase diagram for the: 1
5 [3-4] model. &) J1 > 0 (with zJp/J1 = 2); (b)

]2/U1| 11_< 0, one-dimensional case (= 0). () /1 <O
(with zJo/|J1] = 2).

by the Hamiltonians

IoE
H=— Z Z 5 (; S,,,S,-,k> + J1SiSisnj + J2Si i Siv2 + hSij
1 J =,

[2-2] model a7

[ Jo (< 2 @
H=— Z Z 5 <; Si,jS,-,k> + 1SiSisnj + J2S7 S0 + RS
i J (= -

[2-4] model (18)

L
H=- Z Z EO <Z Si,jSi,k> + J18ijSiv1j + JZSi,jSi2+1.jSi+2,j + hSi,j:|
T 7 L° V=
[3-4] model (29)

These models are composed of chains of spins parallel te-teds (say), and nearest-
neighbouring chains interact through an interchain exchange interaction. The discussion will
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be confined to those lattices for which each spin in a chain has only one nearest-neighbouring
spin in each of the nearest-neighbouring chains, and they lie in a plane perpendicular to
the c-axis through the spin in questionly is the interchain exchange coupling between
those spins. The summations oveand j are over all the spins along the chain, and in
the c-plane, respectively. The summation overs over thez nearest neighbours gf in
the c-plane. For examplez is 2 and 4 for square and simple cubic lattices, respectively.
(It is understood that the first term in equations (17)—(19) is to be omitted when0,
corresponding to uncoupled one-dimensional chains).

For ferromagnetic interchain couplingo(> 0), it is believed that all the spins within
the c-plane are stabilized in the same spin state, that is, there exists no phase shift along the
c-axis between the spin configurations of the different chains. Therefore, the ground state
in each model can be described by the following chain Hamiltonians,

Ji

Ho=— (ZZO S+ 1S Sip1 + JoSiSipo + hS,-) [2-2] model (20)
zJ.

He = — Z (205,.2 + J18;Sip1 + J2S2SE, + hSi> [2—4] model (21)
ZJ()

He =— E <2S12 + J18iSiv1 + J2SiSi2+1Si+2 + hS,) [3—4] model. (22)

Thus whenJy > 0, these models are essentially one-dimensional models and their magnetic
phase diagrams can be rigorously determined using the theory of the previous sections.

As for the one-dimensional case, the ground state of the two- and three-dimensional
[2-2] model with arbitrary spin quantum numbér may be described by a reduced
Hamiltonian,

2 h
- 52 ,Z <J10i0i+1 + J20i0i42 + Sm) (23)

whereo; = £1, andN is the chain length. The interchain couplinf, thus only appears
in a constant term in the reduced Hamiltonian and so does not change the picture of the
ground-state phase diagram. Figure 6 thus holds for the two- and three-dimensional models
being considered, as well as for the one-dimensional case.

The magnetic phase diagram for thie= 1 [2—4] model when the axial bilinear exchange
interaction J; is ferromagnetic is shown in figure 7 (drawn for the case whén= 0).
The coordinatesJ,/J1, h/J1) of the multiphase point A, and the equations of the phase
boundaries are given by

3 zh
(- i0) 24
M- h=0 M —-—MM1O0O): 3J1+4L+2h+2Jy=0. (25)

It is seen that increasing/y only translates the picture to the left, so the phase diagram is

topologically invariant with respect to the dimensionality and to the interchain coupling.
For the antiferromagnetic casd; < 0, the situation is much more complicated, as

shown in figure 8. When the effective interchain coupling is relatively smafl,0o/|J1| <

1, the phase diagram is as shown in figura)8((This figure is drawn for the case of

zJo = 0.) An expanded portion of the inner part of the phase diagram is shown in

figure 8p), for clarity of labelling. The coordinate&/,/|J1|, h/|J1]) of the multiphase
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points are as follows:

5 zJo 7 zJo
AT : —_ &+ Bt : -, +2
( 8 4|/ 4) ( 417y )

1
ct: (=12 pe: (=3 2 g
2 A4l 4 4/
3 Ji 3 Ji
B (2o 200 % o0
2 2lh 4 44
=5 (-1— o 3 2h )
1l 2 2|A]
With increase it Jo, all the points A, B*, C*, D* translate horizontally to the left in this
picture by the same amount/o/4|J1|. However, as the effective interchain couplingp,
increases, the multiphase points Bnd F approach each other (as also do &nd F).
The phaseg OO and(O(O | become increasingly narrow and eventually disappear when
the points B and F* coalesce atl,/|J:| = —2, h = £1. This occurs at the critical value
zJo/|J1| = 1. Above this critical value of the effective interchain coupling strength, the
phase diagram is as shown in figures)&nd @) (plotted for the caseJo/|/1| = 2). The
coordinates(J»/|J1|, h/|J1]) of the multiphase points G (figure 8()) that arose from the
merger of B and F of figure 8p) are
7 zJo
G (- — =, 41). 27
( 4 4|4 ) (27)
The phase boundaries in figure 8, that cannot be deduced from the coordinates of the
multiphase points given above, are

M =M1O): 2| —2/2—h—(zJo/2) =0
MO — (M OO): [l —4J2—2h—zJo=0
with those for negativés deduced by symmetry.
The magnetic phase diagrams for the spin-1 [3—4] models are shown in figure 9. With a
ferromagnetic axial bilinear exchange interactifrthe situation is as in figure 8] (drawn
for the case whenJy/J1 = 2). The coordinatesJ,/J1, h/J1) of the multiphase points,
and the phase boundaries are

Jo zJo 1
At (1200 g4 200 Bt: (—=.0 29
( 2J1 Jl) ( 2 (29)

M=) : 201 +3L+h+(2Jo/2) =0
MO)— (M) 1 i+30+2h — (2Jo/2) =0.

The point B® is independent of the dimensionality and strength of the interchain coupling,
whilst the points A move to lower values ofl, and occur at higher values ¢f| aszJo
increases.

On the other hand, when the axial bilinear exchange interadtios antiferromagnetic
(J1 < 0) the situation is different for the one-dimensional and for the two- and
three-dimensional cases. The former is shown in figutg), 9where the coordinates
(J2/|J1l, h/|J1| of the multiphase points are

A* =B*:(0,+2) ct:(-%0 D*: (-3,45). (31)

For the two- and three-dimensional cases, tHesBlit away from AF as shown in figure @j
(drawn forzJo/|J1| = 2) and new phase boundaries betweenthe andt phases, and

(26)

(28)

(30)



Ground-state configurations of Ising models 961

between thet || and| phases, appear. The coordinatés/| /1|, #/|J1]) of the multiphase
points are as follows:

Jo zJo
Ai:<—z,iZi> B* : (0, +2) ct:(-1,0
2|J1 [J1] 2

¥/ T
D* : (-3— 00 454 ZO) .
[J1] |J1]|

Thus the coordinates of Band Ct are independent of the interchain coupling and the
relative separation of A and D remains fixed. The phase boundaries in figures) 9(
and ¢€), that cannot be inferred from the coordinates of the multiphase points given above,
are

(32)

(=10 |4J1] —6J2—2h — Jo=0

33
(M O) = (1141 20J1] — 6, — 4h + 2Jo = 0. (33)

4. Conclusions

In this paper, by adopting the concept of fundamental spin arrangements we have proposed
a lemma applicable to the calculation of the ground state of all one-dimensianal

models of arbitrary spin with various nearest- and next-nearest-neighbour interactions. As
well as deriving the lemma, a prescription for the construction of all the fundamental spin
arrangements has been given, and they have been Iistesdzfog andS = 1. The lemma

has been applied to determine the exact ground state femtkiel [2—2] model of arbitrary

spin, and theS = 1 ANNNI [2—4] and [3-4] models in one, two and three dimensions. We
have checked our results by numerical simulation of the ground states of finite chains.

Yamada and Hamaya [11] have shown that the phase structure of a large number of
ferroelectric materials can be explained usingaamni model extended to include axial
third-nearest-neighbour interactions (i.e. #eNI model). It thus seems that the ground
states for systems with more distant nearest-neighbour interactions than those we have
considered above, are also important in some physical situations [12-14] .

The necessary modifications to the above theory for these systems are as follows. First,
for systems having third- and fourth-nearest-neighbour interactions our basic dividing rule,
presented in section 2.1, has to be modified. Instead of basing it on the repetition in
states of pairs of nearest-neighbouring spins, it has to based on the repetition in states
of triplets and quartets of spins, respectively. In general, for a systemntlitmearest-
neighbour interactions one has to look for repetitions in states along the chain in clusters
of n spins. Secondly, fornth-nearest-neighbour interactions the maximum number of spins
in a fundamental spin arrangement has to be increased @6m- 1)2, as was the case in
section 2.2, ta2S + 1)", which is the total number of different configurations for a cluster
of n spins. The set of fundamental spin arrangements is obtained by the combination
of these(2S + 1)" arrangements, without repetition. For 8n= % system with third- and
fourth-nearest-neighbour interactions there exist 15 and 106 fundamental spin arrangements,
respectively. Using these fundamental spin arrangements it is possible to determine the
magnetic phase diagrams for Ising models with couplings to such distant axial nearest
neighbours.

The ground states of > g extendedaNNNI models can be obtained in the same way.

For the case of = % for example, there appear 60 487 fundamental spin arrangements up
to 16 spins in length, and we have found that in both the [2—-4] and [3—4] models, increasing
the magnitude of§ causes considerable changes, and complications to the magnetic phase
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diagram. These changes may be attributed to the non-linearity of the higher-order spin
interactions.

Although in this paper attention has been focused on the ground state, it is an attractive
problem to study the behaviour of the extendeaini models at finite temperature. Monte
Carlo simulation [3] and molecular field calculations [9] have shown thatStkel three-
dimensional [2-2] model is qualitatively similar to that of tlfe= % ANNNI model [1].

In the three-dimensional [3—4] model, a molecular field calculation [10] has shown that
a re-entrant phase transition exists near the multicritical point and the devil’'s flower is
partially destroyed around the multicritical point f8r> 1. For this model withS > 1, a
Monte Carlo simulation is now in progress which should clarify the situation regarding the
existence of the re-entrant phase transition. Also, for the three-dimensional [2—4] model,
a molecular field calculation and a Monte Carlo simulation are in progress. From these
calculations the role of higher order spin interactions in frustrated systems should become
clearer.
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