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Abstract. A lemma, proposed by Morita and Horiguchi to determine the ground-state phase
diagram of the spin-12 axial next-nearest-neighbour Ising (ANNNI) model, is generalized to
arbitrary spin. A prescription for finding the ‘fundamental spin arrangements’ which are the
basic building blocks for the ground state is given, and the method of constructing the ground
state is explained. The method is applied to a determination of the magnetic ground-state phase
diagrams of theANNNI model with arbitrary spin, various one-dimensional spin-1ANNNI models
with higher-order axial spin interactions, and to the same systems with interchain couplings in
two and three dimensions.

1. Introduction

The axial next-nearest-neighbour Ising (ANNNI) model with bilinear exchange [1] has
attracted many investigators on account of the fact that it is a simple model that exhibits
spatially modulated phases. Spin-S Ising models with higher-order next-nearest-neighbour
interactions may be regarded as extendedANNNI models, and are also expected to exhibit a
variety of interesting phase transitions and ordered states.

Determination of the ground-state spin configuration is a fundamental and, in the case of
systems with competing interactions, a non-trivial problem, in the study of phase transitions.
For one-dimensional Ising systems with periodic boundary conditions, the eigenvalues of
the transfer matrix can be used to determine the ground-state energy [2, 3]. However, for
a spin-S system with next-nearest-neighbour interactions, the size of the transfer matrix is
(2S +1)2 × (2S +1)2. Thus for a system with large spin, or one having even more extended
interactions, it becomes very difficult to calculate the eigenvalues analytically due to the
size of the matrix involved. As the ground-state configuration is determined indirectly from
the exact ground-state energy in this method, the transfer matrix approach is no longer
feasible for this purpose. For systems with macroscopic ground-state degeneracy [4], a
direct determination of the spin configurations is required.

The one-dimensionalS = 1
2 ANNNI model in an external field may be described by the

Hamiltonian

H = −
∑

i

(J1SiSi+1 + J2SiSi+2 + hSi) [2–2] model (1)
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whereJ1 and J2 are the nearest and next-nearest-neighbour exchange interactions, andh

is the external field (in units where the splitting factor and Bohr magneton are unity).
Throughout this paper, it is tacitily assumed that periodic boundary conditions are imposed
on all the systems.

For the above model, Morita and Horiguchi [5] proved the lemma that an arbitrary
spin configuration can be regarded as composed of a sequence of only six kinds of spin
arrangements, and that the total energy,E, is a linear combination of the energy elements,
εi , belonging to them. Specifically,

E = n+ε+ + n−ε− + 2n+−ε+− + 3n+−−ε+−− + 3n+−+ε+−+ + 4n+−−+ε+−−+ (2)

where the subscripts+−, etc indicate the spin arrangements.ni is the number of times the
particular arrangement,i, occurs in the arbitrary spin configuration, and the energiesεi are
the energies per spin in each arrangement.

In this paper we adopt the concept ofa fundamental spin arrangementand generalize
the above lemma to be applicable to all one-dimensional extendedANNNI models of arbitrary
spin S with nearest and various next-nearest-neighbour interactions, described by

H = −
∑

i

H(Si, Si+1, Si+2) (3)

whereSi = S, S −1, . . . ,−S. H(Si, Si+1, Si+2) may include not only the bilinear exchange
interactionsSiSi+1, but also higher-order spin interactionsS2

i S
2
i+1, SiS

2
i+1Si+2, for example.

This extended lemma is then used, firstly, to find the ground-state phase diagram of various
one-dimensional extendedANNNI models exactly, and secondly, to find the ground state
of axial two- and three-dimensional models having ferromagnetic interchain couplings. As
a check on our technique, we have compared our results with those of a direct computer
search for the ground-state configuration of finite chains.

The arrangement of the paper is as follows. In section 2.1 the extended lemma
is proposed, and a demonstration of its use on a specimen configuration is presented.
Section 2.2 gives the prescription for finding the fundamental spin arrangements into which
an arbitrary configuration may be broken. For the cases ofS = 1

2 and S = 1 all the
fundamental spin arrangements are found. The construction of the ground state is described
in section 2.3, and the results for the ground-state phase diagrams of the one-dimensional
and higher-dimensional extendedANNNI models are presented in sections 3.1 and 3.2,
respectively. Finally, in section 4, the results are summarized and concluding remarks
made.

2. Basic theory

2.1. A lemma

We introduce abasic dividing rule for Ising chains of arbitrary spin quantum number,
having only nearest- and next-nearest-neighbour spin interactions. (The slight modification
required for systems with a more extensive range of interactions is given in section 4.) A
one-dimensional spin arrangement on which periodic boundary conditions are imposed will
be called aclosed chain. Denoting the spin states ofSi by A, B, C, etc, the basic dividing
rule can be described with the help of figure 1. Proceeding along the chain, one looks at
the sequence of states associated with each pair of nearest-neighbouring spins in turn. If
a sequence of states repeats, one cuts the closed chain immediately to the left of the first
spin in each of the repeating segments. Periodic boundary conditions are then imposed on
each of the broken parts to form new closed chains. Thus in figure 1, with the observation
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Figure 1. The basic dividing rule for arbitrary spin quantum number. A, B,. . . , indicate
different spin states.

Figure 2. An example of a decomposition of a spin-1 configuration into fundamental spin
arrangements, for a system with nearest- and next-nearest-neighbour interactions.

that segment AB occurs twice, the initial closed chain is broken to the left of each AB to
give two new chains as shown. It is easily verified, that for systems having only nearest-
and next-nearest-neighbour interactions, that the energy of the original closed chain is equal
to the sum of the energies of the two shorter closed chains. One then looks for further
repetition in the sequences of the states of nearest-neighbouring spins in the smaller chains,
and the process is repeated until no further subdivision of the smaller chains is possible.
This process is comprehensively illustrated in figure 2, where the decomposition of a spin
configuration of 30 spins of a spin-1 system is shown. The shaded closed chains, for which
no further subdivision is possible, are termedfundamental spin arrangements.

The lemma is as follows. The total energyE of an arbitrary spin configuration can be
expressed as a linear combination of the energiesκ(θ)ε(θ), corresponding to fundamental
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spin arrangementsθ , of which the number is finite. ε(θ) is the energy/spin of the
fundamental spin arrangement containingκ(θ) spins. Mathematically,

E =
∑

θ

κ(θ)n(θ)ε(θ) (4)

N =
∑

θ

κ(θ)n(θ) (5)

whereN is the total number of spins in the arbitrary spin configuration, andn(θ) is the
number of times the fundamental spin arrangementθ appears in its subdivision.

2.2. The fundamental spin arrangements

As with section 2.1, the discussion is restricted to those fundamental spin arrangements
appropriate to systems described by equation (3). The extension to systems with more
extended interactions is mentioned in section 4. Because each spin can be in one of
(2S + 1) possible states, the total number of different configurations for a pair of spins
is (2S + 1)2. Since a fundamental spin arrangement cannot (by definition) have a repetition
in the sequence of states for a pair of spins, the maximum number of spins in a fundamental
spin arrangement is(2S + 1)2.

To find all the possible fundamental spin arrangements we make use of a directed graph
of the type used in graph theory [6] . The graphs for the fundamental spin arrangements are
constructed by connecting(2S+1) vertices by directed edges. Each vertex represents one of
the (2S + 1) spin states and the complete directed graph also has loops connecting a vertex
with itself. Each directed edge of this complete directed graph represents the sequence of
states for two nearest-neighbouring spins. A fundamental spin arrangement thus corresponds
to closed directed looped patterns around the directed edges, without repetition.

The complete directed graph for theS = 1
2 systems is shown in figure 3. The six looped

patternsa, c, b → d, a → b → d, b → c → d and a → b → c → d represent the
six fundamental spin arrangements↑, ↓, ↑↓, ↑↑↓,↑↓↓ and↑↑↓↓, with periodic boundary
conditions, respectively. This result is in agreement with that of Morita and Horiguchi [5] .

The complete directed graphs forS = 1 andS = 3
2 systems are shown in figures 4(a) and

(b), respectively. For aS = 1 system, there exist 92 fundamental spin arrangements, listed
in figure 5, corresponding to the possible closed clockwise looped patterns of figure 4(a).
In figure 5, the fundamental spin arrangements of each length have been divided into three
groups. Those of type ‘a’, are all the ones possessing left–right symmetry in the reversal
of the order of the elements (remembering periodic boundary conditions are imposed). The
remainder do not exhibit that symmetry. Each of the latter is classed as either type ‘b’ or
type ‘c’ depending on whether, or not, it, and it’s distinct reversed partner, can be used to
construct macroscopic degenerate spin configurations (see the next section).

Figure 3. The complete directed graph corresponding to aS = 1
2 system.
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Figure 4. The complete directed graph corresponding to (a) a spin-1, (b) a spin-32 system.

Figure 5. The fundamental spin arrangements for a spin-1 system having nearest- and next-
nearest-neighbour interactions.

2.3. The ground state

Just as, in section 2.1, arbitrary spin configurations can be divided into a sum of spin
arrangements with the same total energy, fundamental spin arrangements may be used to
construct arbitrary spin arrangements whose energy can be the sum of the energies of the
fundamental spin arrangements used. Since the ground state of a system is that having
the least energy per spin, we can construct it from the fundamental spin arrangements,θ∗

i ,
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having the least energy per spin of all the fundamental spin arrangements possible, in such
a way that the ground-state energy,E, is

E =
∑

i

κ(θ∗
i )n(θ∗

i )ε(θ∗
i ) N =

∑
i

κ(θ∗
i )n(θ∗

i ) . (6)

We consider first the situation when there is a uniqueθ∗. That is, there is only one
fundamental spin arrangement having the lowest energy per spin. Further, ifθ∗ is of the
type ‘a’, it is seen from the basic dividing rule that equation (6) can be made to hold if we
simply join then(θ∗) fundamental spin arrangementθ∗ end to end, but with the sequence
of states in eachθ∗ occurring in the same order along the chain. As an example, in the
spin-1 case, if the fundamental spin arrangement↑↑©© has the lowest energy per spin,
then the ground state is

↑↑©© ↑↑©©↑↑© © · · · .
On the other hand, ifθ∗ had been of type ‘b’, two possibilities exist since we may use
eitherθ∗, or θ∗

r obtained by left↔right reversal in the order of the elements. For example,
if θ∗ is ↑©↓, thenθ∗

r is ↓©↑ and we have the two possibilities

↑©↓ ↑©↓ ↑©↓ ↑©↓ · · ·
↓©↑ ↓©↑ ↓© ↑ ↓©↑ · · · .

These, of course, are equivalent, the second simply corresponding to the reversal of the
chain direction, so it is not a new ground state. We note also, that for this fundamental
spin arrangement any spin configuration formed by a combination ofθ∗ andθ∗

r must lead
to a higher energy, as the configuration obtained cannot be subdivided back into justθ∗ and
θ∗
r ’s using the basic dividing rule. The ground state therefore is non-degenerate.

However, if θ∗ is one of the fundamental spin arrangements we have labelled ‘c’,
the situation is different. In that case other spin configurations can be constructed from
combinations ofθ∗ and θ∗

r without increasing the energy per spin. For example, with
θ∗ =↑©©↓ (= ©©↓↑) andθ∗

r =↓©©↑ (= ©©↑↓), we may form sequences like

©©↓↑©©↓↑©©↑↓©©↓↑©©↑↓
having the same energy as that configuration

©©↓↑©©↓↑©©↓↑©©↓↑©©↓↑
constructed just fromθ∗. This combination ofθ∗ and θ∗

r leads to a ground state with a
macroscopic degeneracy, whose value for this example is given in the next section. We also
point out that, since the energy per spin ofθ∗ andθ∗

r are always the same, independent of
the Hamiltonian parameters, this type of degeneracy is generally associated with extended
regions of the phase diagram.

The second situation is when there is more than one fundamental spin arrangementθ∗

having the same lowest energy per spin. This is the situation that always occurs at a phase
boundary, and can again give rise to a macroscopic degeneracy. An example is given in
the next section.

3. Magnetic phase diagrams

3.1. One-dimensional models

In this section, exact results for the magnetic phase diagrams of the one-dimensionalANNNI

([2–2]) model described by the Hamiltonian of equation (1), and for the one-dimensional
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extendedANNNI ([2–4] and [3–4]) models described by

H = −
∑

i

(J1SiSi+1 + J2S
2
i S

2
i+2 + hSi) [2–4] model (7)

H = −
∑

i

(J1SiSi+1 + J2SiS
2
i+1Si+2 + hSi) [3–4] model (8)

are obtained using the methods described above. In the [2–4] and [3–4] models the higher-
order spin interactions,S2

i S
2
i+2 (the biquadratic interaction) andSiS

2
i+1Si+2 (the three-site

four-spin interaction), are considered as next-nearest-neighbour interactions [7] .
The magnetic ground-state phase diagrams for theS = 1

2 [2–2] model are shown in
figure 6. Although plotted in a different parameter space, it can be shown that they are
consistent with the phase diagram of Morita and Horiguchi [5] . The same magnetic phase
diagram (apart from scaling) is also obtained for theS = 1 [2–2] model. In fact, the ground
state of the one-dimensional [2–2] model with arbitrary spin quantum numberS may be
described by the following reduced Hamiltonian:

Hred = −S2
∑

i

(
J1σiσi+1 + J2σiσi+2 + h

S
σi

)
, (9)

whereσi = ±1. Thus by using the reduced fieldh/S|J1|, figure 6 gives the ground-state
phase diagram for arbitrary spin quantum numberS. The coordinates(J2/|J1|, h/S|J1|) of
the multiphase points are

A :
(− 1

2, 0
)

A± : (0, ±2) B± :
(− 1

2, 0
)
. (10)

Also, the phase boundaries are as follows:
For J1 > 0,

(↑) − (↓) : h = 0 (↑) − (↑↑↓↓) : J1 + 2J2 + (h/S) = 0 . (11)

For J1 < 0,

(↑) − (↑↓) : 2|J1| − (h/S) = 0 (↑) − (↑↑↓) : 2|J1| − 2J2 − (h/S) = 0

(↑↑↓) − (↑↑↓↓) : |J1| + 2J2 + (h/S) = 0 .
(12)

Figure 6. The ground-state phase diagram of theANNNI [2–2] model with arbitrary spin. (a)
and (b) are forJ1 > 0 andJ1 < 0, respectively.
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Figure 7. The ground-state phase diagram for theS = 1
[2–4] model withJ1 > 0, in the case whenzJ0 = 0.

The other phase boundaries can be obtained by symmetry, or from the coordinates of the
multiphase points given in equation (10).

The ground-state phase diagrams for theS = 1 [2–4] and [3–4] models are shown in
figures 7 and 8, and in figure 9, respectively. The salient features of these phase diagrams
are described in the next section dealing with two- and three-dimensional models in which
interchain coupling is also included. The result for theS = 1 [3–4] model withJ1 > 0,
in the special case whenh = 0, is in agreement with that obtained by the transfer matrix
method [3]. As a check on our technique, we have compared the phase diagrams with those
deduced from the results of a computer search of the ground-state configurations of finite
chains up to twelve spins long. The results agree.

The ground-state degeneracy at the phase boundaries in theANNNI model has been
discussed in [8]. Similar considerations apply to the phase boundaries in the [2–4] and
[3–4] models. As an example, we consider the phase boundary between the↑ phase and
the ↑↑ ©© phase in figure 7. On the boundary, any sequence of the fundamental spin
arrangements↑ and ↑↑ ©© along the chain has the same ground-state energy, since the
ε↑ and ε↑↑©© are degenerate at the phase boundary. LettingDN denote the ground-state
degeneracy of anN -spin system, the recurrence relation

DN = DN−1 + DN−4 (13)

is obtained. In the thermodynamic limit, we find the remanent entropy is given by

lim
N→∞

1

N
ln(DN) = ln(χ) ≈ 0.322 28 (14)

whereχ is the solution of the quartic equationχ3(χ − 1) = 1. Due to symmetry, the same
result also applies to the boundary between the↓ and©©↓↓ phases.

Macroscopic ground-state degeneracies can exist within a region of the phase diagram,
as was pointed out in [4] in the case of the triangular antiferromagnet. For example,
the phase labelled↑ ©© ↓ in figure 8(a) has a degeneracy for the reasons discussed in
section 2.3. In this case, the recurrence relation

DN = 2DN−4 (15)
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Figure 8. The ground-state phase diagram for theS = 1 [2–4] model withJ1 < 0. (a) and (c)
correspond tozJ0/|J1| = 0 and 2, respectively. Portions of these diagrams are expanded in (b)
and (d), respectively, to show the labelling of the multiphase points.

holds, and the remanent entropy is

lim
N→∞

1

N
ln(DN) = 1

4
ln(2) . (16)

3.2. Axial two- and three-dimensional models with ferromagnetic interchain coupling

In this section we report results for the magnetic ground-state phase diagrams of axial two-
and three-dimensional models having ferromagnetic interchain coupling [3, 9, 10], described
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Figure 9. The ground-state phase diagram for theS = 1
[3–4] model. (a) J1 > 0 (with zJ0/J1 = 2); (b)
J1 < 0, one-dimensional case (z = 0). (c) J1 < 0
(with zJ0/|J1| = 2).

by the Hamiltonians

H = −
∑

i

∑
j

[
J0

2

( z∑
k=1

Si,j Si,k

)
+ J1Si,j Si+1,j + J2Si,j Si+2,j + hSi,j

]
[2–2] model (17)

H = −
∑

i

∑
j

[
J0

2

( z∑
k=1

Si,j Si,k

)
+ J1Si,j Si+1,j + J2S

2
i,j S

2
i+2,j + hSi,j

]
[2–4] model (18)

H = −
∑

i

∑
j

[
J0

2

( z∑
k=1

Si,j Si,k

)
+ J1Si,j Si+1,j + J2Si,j S

2
i+1,j Si+2,j + hSi,j

]
[3–4] model. (19)

These models are composed of chains of spins parallel to thec-axis (say), and nearest-
neighbouring chains interact through an interchain exchange interaction. The discussion will
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be confined to those lattices for which each spin in a chain has only one nearest-neighbouring
spin in each of the nearest-neighbouring chains, and they lie in a plane perpendicular to
the c-axis through the spin in question.J0 is the interchain exchange coupling between
those spins. The summations overi and j are over all the spins along the chain, and in
the c-plane, respectively. The summation overk is over thez nearest neighbours ofj in
the c-plane. For example,z is 2 and 4 for square and simple cubic lattices, respectively.
(It is understood that the first term in equations (17)–(19) is to be omitted whenz = 0,
corresponding to uncoupled one-dimensional chains).

For ferromagnetic interchain coupling (J0 > 0), it is believed that all the spins within
thec-plane are stabilized in the same spin state, that is, there exists no phase shift along the
c-axis between the spin configurations of the different chains. Therefore, the ground state
in each model can be described by the following chain Hamiltonians,

Hc = −
∑

i

(
zJ0

2
S2

i + J1SiSi+1 + J2SiSi+2 + hSi

)
[2–2] model (20)

Hc = −
∑

i

(
zJ0

2
S2

i + J1SiSi+1 + J2S
2
i S

2
i+2 + hSi

)
[2–4] model (21)

Hc = −
∑

i

(
zJ0

2
S2

i + J1SiSi+1 + J2SiS
2
i+1Si+2 + hSi

)
[3–4] model. (22)

Thus whenJ0 > 0, these models are essentially one-dimensional models and their magnetic
phase diagrams can be rigorously determined using the theory of the previous sections.

As for the one-dimensional case, the ground state of the two- and three-dimensional
[2–2] model with arbitrary spin quantum numberS may be described by a reduced
Hamiltonian,

Hred = −zNJ0S
2

2
− S2

∑
i

(
J1σiσi+1 + J2σiσi+2 + h

S
σi

)
(23)

whereσi = ±1, andN is the chain length. The interchain coupling,J0, thus only appears
in a constant term in the reduced Hamiltonian and so does not change the picture of the
ground-state phase diagram. Figure 6 thus holds for the two- and three-dimensional models
being considered, as well as for the one-dimensional case.

The magnetic phase diagram for theS = 1 [2–4] model when the axial bilinear exchange
interactionJ1 is ferromagnetic is shown in figure 7 (drawn for the case whenzJ0 = 0).
The coordinates(J2/J1, h/J1) of the multiphase point A, and the equations of the phase
boundaries are given by

A :

(
−3

4
− zJ0

4J1
, 0

)
(24)

(↑) − (↓) : h = 0 (↑) − (↑↑©©) : 3J1 + 4J2 + 2h + zJ0 = 0 . (25)

It is seen that increasingzJ0 only translates the picture to the left, so the phase diagram is
topologically invariant with respect to the dimensionality and to the interchain coupling.

For the antiferromagnetic case,J1 < 0, the situation is much more complicated, as
shown in figure 8. When the effective interchain coupling is relatively small, 06 zJ0/|J1| <

1, the phase diagram is as shown in figure 8(a). (This figure is drawn for the case of
zJ0 = 0.) An expanded portion of the inner part of the phase diagram is shown in
figure 8(b), for clarity of labelling. The coordinates(J2/|J1|, h/|J1|) of the multiphase
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points are as follows:

A± :

(
−5

8
− zJ0

4|J1| , ±
7

4

)
B± :

(
− zJ0

4|J1| , ±2

)
C± :

(
−1

2
− zJ0

4|J1| , ±1

)
D± :

(
−3

4
− zJ0

4|J1| , 0

)
E± :

(
−3

2
− zJ0

2|J1| , ±
3

4
± zJ0

4|J1|
)

F± :

(
−1 − zJ0

|J1| , ±
3

2
∓ zJ0

2|J1|
)

.

(26)

With increase inzJ0, all the points A±, B±, C±, D± translate horizontally to the left in this
picture by the same amount,zJ0/4|J1|. However, as the effective interchain coupling,zJ0,
increases, the multiphase points E+ and F+ approach each other (as also do E− and F−).
The phases↑©© and©©↓ become increasingly narrow and eventually disappear when
the points E± and F± coalesce atJ2/|J1| = −2, h = ±1. This occurs at the critical value
zJ0/|J1| = 1. Above this critical value of the effective interchain coupling strength, the
phase diagram is as shown in figures 8(c) and (d) (plotted for the casezJ0/|J1| = 2). The
coordinates(J2/|J1|, h/|J1|) of the multiphase points G± (figure 8(d)) that arose from the
merger of E± and F± of figure 8(b) are

G± :

(
−7

4
− zJ0

4|J1| , ±1

)
. (27)

The phase boundaries in figure 8, that cannot be deduced from the coordinates of the
multiphase points given above, are

(↑) − (↑↑©) : 2|J1| − 2J2 − h − (zJ0/2) = 0

(↑↑©) − (↑↑©©) : |J1| − 4J2 − 2h − zJ0 = 0
(28)

with those for negativeh deduced by symmetry.
The magnetic phase diagrams for the spin-1 [3–4] models are shown in figure 9. With a

ferromagnetic axial bilinear exchange interactionJ1 the situation is as in figure 9(a) (drawn
for the case whenzJ0/J1 = 2). The coordinates(J2/J1, h/J1) of the multiphase points,
and the phase boundaries are

A± :

(
−1 − zJ0

2J1
, ±1 ± zJ0

J1

)
B± :

(
−1

2
, 0

)
(29)

(↑) − (↑↑©) : 2J1 + 3J2 + h + (zJ0/2) = 0

(↑↑©) − (↑↑↓↓) : J1 + 3J2 + 2h − (zJ0/2) = 0 .
(30)

The point B± is independent of the dimensionality and strength of the interchain coupling,
whilst the points A± move to lower values ofJ2 and occur at higher values of|h| as zJ0

increases.
On the other hand, when the axial bilinear exchange interactionJ1 is antiferromagnetic

(J1 < 0) the situation is different for the one-dimensional and for the two- and
three-dimensional cases. The former is shown in figure 9(b), where the coordinates
(J2/|J1|, h/|J1| of the multiphase points are

A± = B± : (0, ±2) C± : (− 1
2, 0) D± : (−3, ±5) . (31)

For the two- and three-dimensional cases, the B± split away from A± as shown in figure 9(c)
(drawn for zJ0/|J1| = 2) and new phase boundaries between the↑↑↓ and ↑ phases, and
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between the↑↓↓ and↓ phases, appear. The coordinates(J2/|J1|, h/|J1|) of the multiphase
points are as follows:

A± :

(
− zJ0

2|J1| , ±2 ± zJ0

|J1|
)

B± : (0, ±2) C± : (− 1
2, 0)

D± :

(
−3 − zJ0

|J1| , ±5 ± zJ0

|J1|
)

.

(32)

Thus the coordinates of B± and C± are independent of the interchain coupling and the
relative separation of A± and D± remains fixed. The phase boundaries in figures 9(b)
and (c), that cannot be inferred from the coordinates of the multiphase points given above,
are

(↑) − (↑↑©) : |4|J1| − 6J2 − 2h − J0 = 0

(↑↑©) − (↑↑↓↓) : 2|J1| − 6J2 − 4h + zJ0 = 0 .
(33)

4. Conclusions

In this paper, by adopting the concept of fundamental spin arrangements we have proposed
a lemma applicable to the calculation of the ground state of all one-dimensionalANNNI

models of arbitrary spin with various nearest- and next-nearest-neighbour interactions. As
well as deriving the lemma, a prescription for the construction of all the fundamental spin
arrangements has been given, and they have been listed forS = 1

2 andS = 1. The lemma
has been applied to determine the exact ground state for theANNNI [2–2] model of arbitrary
spin, and theS = 1 ANNNI [2–4] and [3–4] models in one, two and three dimensions. We
have checked our results by numerical simulation of the ground states of finite chains.

Yamada and Hamaya [11] have shown that the phase structure of a large number of
ferroelectric materials can be explained using anANNNI model extended to include axial
third-nearest-neighbour interactions (i.e. theA3NNI model). It thus seems that the ground
states for systems with more distant nearest-neighbour interactions than those we have
considered above, are also important in some physical situations [12–14] .

The necessary modifications to the above theory for these systems are as follows. First,
for systems having third- and fourth-nearest-neighbour interactions our basic dividing rule,
presented in section 2.1, has to be modified. Instead of basing it on the repetition in
states of pairs of nearest-neighbouring spins, it has to based on the repetition in states
of triplets and quartets of spins, respectively. In general, for a system withnth-nearest-
neighbour interactions one has to look for repetitions in states along the chain in clusters
of n spins. Secondly, fornth-nearest-neighbour interactions the maximum number of spins
in a fundamental spin arrangement has to be increased from(2S + 1)2, as was the case in
section 2.2, to(2S + 1)n, which is the total number of different configurations for a cluster
of n spins. The set of fundamental spin arrangements is obtained by the combination
of these(2S + 1)n arrangements, without repetition. For anS = 1

2 system with third- and
fourth-nearest-neighbour interactions there exist 15 and 106 fundamental spin arrangements,
respectively. Using these fundamental spin arrangements it is possible to determine the
magnetic phase diagrams for Ising models with couplings to such distant axial nearest
neighbours.

The ground states ofS > 3
2 extendedANNNI models can be obtained in the same way.

For the case ofS = 3
2, for example, there appear 60 487 fundamental spin arrangements up

to 16 spins in length, and we have found that in both the [2–4] and [3–4] models, increasing
the magnitude ofS causes considerable changes, and complications to the magnetic phase
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diagram. These changes may be attributed to the non-linearity of the higher-order spin
interactions.

Although in this paper attention has been focused on the ground state, it is an attractive
problem to study the behaviour of the extendedANNNI models at finite temperature. Monte
Carlo simulation [3] and molecular field calculations [9] have shown that theS = 1 three-
dimensional [2–2] model is qualitatively similar to that of theS = 1

2 ANNNI model [1].
In the three-dimensional [3–4] model, a molecular field calculation [10] has shown that
a re-entrant phase transition exists near the multicritical point and the devil’s flower is
partially destroyed around the multicritical point forS > 1. For this model withS > 1, a
Monte Carlo simulation is now in progress which should clarify the situation regarding the
existence of the re-entrant phase transition. Also, for the three-dimensional [2–4] model,
a molecular field calculation and a Monte Carlo simulation are in progress. From these
calculations the role of higher order spin interactions in frustrated systems should become
clearer.
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